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In previous parts of this series [Mettes et al. (2004). Acta Cryst. A60, 621–636;

McClurg & Keith (2010). Acta Cryst. A66, 38–49] a method for constructing

global phase diagrams (GPDs) for molecular crystals was developed and the

method was applied to single-component ordered crystal structures of

tetrahedral molecules. GPDs are useful for visualizing what types of crystal

structures a given molecule may assume depending on molecular form/

interaction. Their construction uses group-theoretical methods which

enumerate all possible symmetry breakings during a statistical mechanical

high-to-low temperature search. In this work these results are expanded upon by

outlining a method to determine a sufficiently rich parameter space to represent

the experimentally observed crystal structures in a data set derived from the

Cambridge Structural Database. This is significant because previous work

(Mettes et al., 2004) did not specify the number of parameters needed for GPDs.

Although there are suggestions in the literature that thousands of parameters

are required to adequately describe tetrahedral molecule intermolecular

potentials, it is found that 15 parameters are sufficient to represent the

structures of the test data. The origin of this difference and its implications for

determining GPD parameter values from a more detailed intermolecular

potential and for interpreting GPD parameter values are discussed.

1. Introduction

Crystal engineering is the design and synthesis of solid-state

structures with desired properties. For molecular crystals this

necessitates a thorough understanding of intermolecular

interactions. While the properties of isolated molecules are

primarily attributable to strong covalent bonding between

atoms, solid-state properties result from relatively weak

interactions between molecules or low-dimensional aggre-

gates of molecules called synthons. Two primary interactions

holding together supramolecular synthons are hydrogen

bonding and coordination complexation, though �–�,

halogen–halogen and ionic interactions have also been

exploited (Thalladi et al., 1996). These synthons then can be

assembled into one-dimensional rods, two-dimensional sheets

and three-dimensional crystal structures. Since many of the

bulk properties of molecular materials are dictated by the

manner in which the molecules are ordered in the solid state,

crystal engineers seek to control this ordering and thus a

material’s electrical, optical, thermal and solubility properties

(Desiraju, 1989; Braga et al., 1999; Simon & Bassoul, 2000;

Lommerse et al., 2000; Holman et al., 2001; Moulton &

Zaworotko, 2001).

Thus supramolecular chemistry depends on subtle inter-

actions and how to control them. Non-covalent bonds have

low energies and often little or no activation energy for

formation. This low bond energy results in structures stabi-

lized by difficult-to-control entropic effects, low melting points

and frequent polymorphism. Likewise, as temperature

changes, the balance of these effects changes, resulting in

structural changes (Neumann et al., 2003). Thus energetics and

thermodynamics are both essential in designing, controlling

and studying molecular crystal chemistry.

Despite ongoing progress in understanding how molecular

crystal structures form, there is still a need for tools to

rationalize the crystal structures adopted by a molecule or

collection of molecules as a function of temperature and

intermolecular potential. Tools for classification and ration-

alization of molecular-packing tendencies under complex

conditions aid crystal engineering to expand its material base

and exploit new conditions to form novel structures. Phase

diagrams are one such class of tools.

Global phase diagrams have been used to rationalize binary

fluid mixture thermodynamics for many years. van Konyen-

burg & Scott provided a general and systematic categorization

of the different types of fluid-phase behavior in binary



mixtures based upon the topology of the critical loci of a van

der Waals equation of state with simple mixing rules (van

Konyenburg & Scott, 1980). They devised a set of global phase

diagrams (GPDs) to classify and rationalize liquid–vapor

phase behavior in terms of general non-specific molecular

parameters. They showed that a simple model can predict

qualitatively most of the known patterns of fluid-phase

behavior, and can reveal the mechanisms of transition among

the different types. Thus they describe five of the six main

experimental classes of fluid behavior differentiated by the

temperature–pressure projections of their critical loci.

Although additional fluid-phase mixture behaviors have since

been observed and a revised nomenclature is now available

(Bolz et al., 1998), the original van Konyenburg system is still

pervasive in the literature (Aparicio-Martinez & Hall,

2007a,b; Cismondi & Michelsen, 2007). Many authors have

repeated this type of study in which other equations of

states based on simplified models, cubic equations of state or

intermolecular-potential-based equations provide the para-

meters of GPDs (Polishuk et al., 2000, 2002; van Pelt et al.,

1995).

In a previous work we have proposed and demonstrated the

construction of molecular crystal GPDs which differ from

fluid-phase GPDs in fundamental ways. Gasses and liquids are

both isotropic fluids which lack long-range orientational and

translational order. Therefore density as a function of

temperature and pressure is a sufficient order parameter for

fluid phase equilibrium. Describing equilibrium among crys-

talline solids requires more complicated order parameters to

account for the diversity of their long-range orientational and

translational orderings. Also, most single-component fluids

share a set of common features in their phase behaviors

including a vapor/liquid equilibrium locus terminating at a

critical point with universal scaling properties, a supercritical

fluid region at temperatures and pressures in excess of the

critical point, and an asymptotic approach toward ideal gas

properties at low pressures and/or high temperatures. The

exceptions to these generalizations are ionic fluids that

decompose before generating a significant vapor phase.

Crystalline solids lack these thermodynamic generalizations,

which prevents the use of simple equation-of-state methods

for generating GPDs for molecular solids.

The molecular crystal GPDs developed in this series are

designed to elucidate the diverse and complex phase behavior

of a set of arbitrarily shaped molecular-scale objects arranged

in a long-range ordered packing rather than in disordered fluid

phases. They do not use an equation of state and mixing rules

but instead rely on fundamental postulates of equilibrium

statistical mechanics, a set of basis functions over rotational

space SOð3Þ to represent the orientational intermolecular

potential, and a set of translational packings over translational

space T3 to represent their translational ordering. The orien-

tational interactions are the result of molecular orbitals fixed

in a molecular frame of reference interacting with molecular

orbitals of other molecules via the intervening orientational

space S2 so that the overall potential is a complete set over

SOð3Þ � S2 � SOð3Þ with intermolecular potential coefficients

indexed by three angular momenta. The mathematical details

are explained by Mettes et al. (2004). Representing the

orientational interactions in this way leads to a countably

infinite set of coefficients. A subset of these coefficients is used

as the set of independent variables in GPDs. The space can

then be projected into two- or three-dimensional spaces for

visualization purposes. Crystalline phases occupy volumes in

the GPDs and equilibrium phase transitions occur at the

boundaries between the phase volumes.

The proper thermodynamic condition for equilibrium of an

isothermal system is minimization of the free energy. The free

energy is calculated relative to a high-temperature reference

lattice in which molecules remain translationally ordered but

are rotationally disordered. Experimentally this is termed a

plastically crystalline state (Sherwood, 1979) and is observable

for many molecules, such as adamantane or methane. Other

systems melt, sublime or decompose before the plastically

crystalline state is obtained. Whether or not the reference

state is observed, it provides a well characterized thermo-

dynamic reference state. This is similar to fluid phase systems

which are routinely referenced to an ideal gas state, even if it

has not been observed. As the temperature is lowered for a

solid with fixed intermolecular potential, new phases arise

through spontaneous symmetry breaking, leading to at least

partial rotational ordering of the molecules.

A GPD example is shown in Figs. 1 and 2, where molecules

are disordered (shown as spheres) at the center of the

diagrams. As the temperature is lowered, the molecules adopt

a fixed orientation. This induces a structural change from f.c.c.,

a high-temperature reference lattice, to one of the ten new

phases shown in the figures.

A series of additional phase transitions may arise as the

temperature is lowered toward absolute zero. For molecules

with non-trivial point-group symmetry, it is convenient to

reduce the dimensionality of the phase diagrams through

adaptation of the potential to account for the molecular

symmetry. This approach of expanding the angle-dependent

intermolecular interactions into symmetry-adapted rotation

functions was originally developed for phase transitions in

heavy methane by James & Keenan (1959) and has since been

applied to crystals such as solid C60 (Michel et al., 1992;

Lamoen & Michel, 1999). Figs. 1 and 2 were constructed for

molecules with tetrahedral point-group symmetry.

Like van Konyenburg’s fluid-phase GPDs, molecular crystal

GPDs are useful as a classification tool. They can be used in

data mining intermolecular forces from structural repositories

such as the Cambridge Structural Database (CSD) (Allen &

Motherwell, 2002), Crystallography Open Database (Gražulis

et al., 2009) or Virtual Neutron Facility (Lin & Keith, 2009).

Also, by locating new structures that may have more desirable

properties than an existing crystal structure, GPDs provide

feedback for molecular synthesis for crystal engineering.

Further, GPDs can provide rationalization and/or prediction

of crystal polymorphs for a given molecule. Metastable poly-

morphs, for example, are likely to be adjacent phases on GPDs

because their free energies are slightly higher than the global

minimum.
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In a companion paper (McClurg & Keith, 2010) we classify

experimental crystal structures composed of tetrahedral point

group molecules to determine what fraction of structures are

amenable to inclusion in the GPDs and the number of refer-

ence lattices necessary to span the observed structures. We

find that 60% of crystal structures composed of molecules with

Td point-group symmetry are amenable and that eight refer-

ence lattices are sufficient to span the observed structures.

In the remaining 40% of the structures, the molecules form

synthons that pack to generate the three-dimensional crystal

structure. This kind of hierarchical structure is not incorpo-

rated in the GPDs as described by Mettes et al. (2004). For the

majority of structures in the test set, eight reference lattices

are sufficient to describe the lattice of molecular centers of

mass. We consider a set of GPDs, one for each reference

lattice.

This work discusses the issue of a minimal set of inter-

molecular potential coefficients needed to construct GPDs.

For GPDs to be useful, the observed crystal structures for an

ensemble of molecules with a given point-group symmetry

should occupy volumes of the GPD with a truncated set of

intermolecular potential coefficients. If the full infinite para-

meter set is needed, then the GPDs lose much of their utility.

It has been suggested that too many parameters are needed to

describe intermolecular potentials for practical use in GPDs

(Briels, 1980). We find that a smaller number of parameters

are sufficient. This finding greatly enhances the utility of GPDs

for materials design. The smaller set of parameters allows

construction of manageably small-dimensional diagrams. Still,

three-dimensional projections are required to produce visua-

lizations with which users may interact and explore crystal-

structure relationships and proximity in crystal phase space.

Molecular crystal GPDs with a manageable number of para-

meters would be valuable to crystal engineers seeking to

coerce an optically active molecule through synthetic pertur-

bations to crystallize in a non-centrosymmetric space group,

for example. They could also prove useful in polymorph

screening to enumerate polymorphs of active pharmaceutical

ingredients.

To explore the requisite number of parameters necessary to

construct molecular crystal GPDs, we begin in x2 by recalling

the rotational potential used previously by Mettes et al. (2004).

We then outline the computational procedure to find potential

parameters for each structure in the same experimental data

set used by McClurg & Keith (2010). This is done using global

optimization techniques among intermolecular potential

parameter and translational symmetry space. In x3 we discuss

the structures that are successfully located in potential para-

meter space using our candidate structure library and inter-

molecular potential. We also identify exceptions that cannot

be located using the method utilized and make recommen-

dations for further work to rectify these omissions.

2. Representative potential determination

Global phase diagrams require (i) reference lattices consistent

with molecular centers of mass in experimental structures and

(ii) intermolecular potential (IP) parameters to use as inde-

pendent parameters. McClurg & Keith (2010) found that the

majority of the experimental structures composed of tetra-

hedral molecules in the CSD can be classified using only four
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Figure 1
½111� view of a GPD for tetrahedral molecules in a face-centered cubic
(f.c.c.) reference lattice. Axes are intermolecular potential coefficients m
scaled by kT. The origin of the axes is the infinite-temperature reference
state. Rays protruding from the surfaces pointing at distinct phases
represent ratios of potential coefficients that form the indicated space
groups. Colored surfaces are boundaries between daughter phases and
the reference f.c.c. phase. Reproduced with permission of the Interna-
tional Union of Crystallography from Mettes et al. (2004)

Figure 2
½�11�11�11� view of a GPD for tetrahedral molecules in an f.c.c. reference lattice.
Some molecules such as those in the Fm�33m structure appear ‘spherical’
because of rapid molecular reorientation. Reproduced with permission of
the International Union of Crystallography from Mettes et al. (2004).



reference lattices. Since there are too few examples for other

reference lattices, we focus on the set {b.c.c., f.c.c., h.c.p., s.c.}

(body-centered cubic, face-centered cubic, hexagonal close

packed and simple cubic, respectively) and use these as a test

set to see how many parameters are required in molecular

crystal GPDs. Each of these reference lattices has at least four

crystal structures with monomer synthons in the data set. This

means a given structure can be categorized as a subgroup of

one of these reference lattices when single molecules are

reduced to spheres (as opposed to dimers or chains; see

McClurg & Keith, 2010). In this section we seek to determine

a sufficient parameter space such that experimental structures

are each stable in a finite volume in the IP parameter space.

Thus we review our choice of IP and define the potential

parameters. Then we outline a method for identifying repre-

sentative potential parameters for each experimental struc-

ture. This is done using a low-temperature structural limit

which is convenient and consistent with the experimental

database but is not strictly necessary. Then the IP is truncated

to create a finite-dimensional IP parameter space. A library of

alternative crystal structures is constructed with which to

compare experimental structures, and a figure of merit is

specified when searching for the potential parameters. This

procedure identifies a structure with similar cell shape,

molecular center of mass and molecular orientations, as illu-

strated in Fig. 3.

2.1. Mesoscopic Hamiltonian

Previously (Mettes et al., 2004) we discussed the construc-

tion of a nearest-neighbor potential for molecules interacting

primarily through van der Waals interactions. The potential V

is a level of abstraction above an atom–atom or site–site

potential but retains a firm basis in quantum mechanics (van

der Avoird et al., 1994). In Mettes et al. (2004) we discuss how

the rotational contribution Vor of V consists of a two-center

expansion constructed by coupling one-center basis functions

U
‘i
m�n� for pairs of molecules i and j through a coupling ‘matrix

function’ J
‘i‘j
m�n�m�n� ,

Vor ¼ ð1=2Þ
P

ij

P
‘i‘jm�m�n�n�

U
‘i
m�n� ðxiÞ

� J
‘i‘j
m�n�m�n� ðm;XijÞU

‘j
m�n�ðxiÞ: ð1Þ

The one half avoids overcounting pairwise interactions,

‘i; ‘j 2 N, the natural numbers, m�;� 2 f‘i;j . . .� ‘i;jg and

n�;� 2 f‘i;j . . .� ‘i;jg. A complete derivation of equation (1) is

given in Appendix A, but here we explore its main compo-

nents.

The functions U
‘i
m�n� ðxiÞ are functions of the orientation of

the molecule through its Euler angles xi using the passive

convention (Varshalovich et al., 1988). They are projected

from SOð3Þ irreducible representations (IRs), also called

Wigner functions, and contain both the point-group symmetry

of the molecule and that of the Wyckoff point in the crystal,

U‘i
m�n�
ðxiÞ ¼

P
mini

S
‘i�
mim�D

‘i
mini
ðxiÞS

‘i
nin� : ð2Þ

The sparse unitary matrix S provides the linear combinations

of Wigner functions which give a particular point-group IR

symmetry (Bradley & Cracknell, 1972). Specifically, the left

multiplication by S�1 in equation (2) gives basis functions

transforming like Wyckoff point-group IRs and the right

multiplication by S gives basis functions of the molecular

point-group IRs. Subscript � is a compound index referring to

multiple copies of the Wyckoff point-group IR subduced in ‘i

and m� spans the dimensions of each IR. Subscript � is a

compound index referring to multiple copies of the molecular

point-group unit IR subduced in the ‘ith manifold of SOð3Þ

and n� is its dimension. Point-group IR subduction frequen-

cies in spherical harmonics are discussed elsewhere (Bradley

& Cracknell, 1972) and in x2.2. The symmetry adaption leaves

relatively few basis functions for molecules with non-trivial

point-group symmetry since only matrix elements where � is

the unit IR (i.e. A1) are kept. This gives basis functions in the

molecular frame with the full molecular symmetry. Thus the

set fU
‘i
m�n� g is a complete set of basis functions taking full

advantage of molecular symmetry.

The coupling matrix J
‘i‘j
m�n�m�n� specifies the angular depen-

dence with respect to molecular centers,

J
‘i‘j
m�n�m�n� ðm;XijÞ ¼

X
‘mimmj

�
n�;n�
‘i;‘;‘j
ðrijÞ

�
‘i ‘ ‘j

mi m mj

�

� S ‘i
m�mi

C‘
mðXijÞS

‘j
m�mj

; ð3Þ

where ‘ 2 f‘i þ ‘j . . . j‘i � ‘jjg, mi;j 2 f‘i;j . . .� ‘i;jg and

m 2 f‘ . . .� ‘g. The potential coefficients �
n�;n�
‘i;‘;‘j
ðrijÞ are a

function of the distance rij between molecular centers. The

neighbor distance rij and orientation �ij of the intermolecular

vector are determined by the reference lattice. Since we

consider pairwise interactions only among the equidistant

nearest neighbors of the reference lattices, the functions

�
n�;n�
‘i;‘;‘j
ðrijÞ are only evaluated at the nearest-neighbor distance

and are treated as scalars. Thus the coupling matrix J
‘i‘j
m�n�m�n�

contains reference-lattice information through �ij and rij as

well as pairwise intermolecular potential information through

the coefficients m. These coefficients have inversion symme-
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Figure 3
Comparison of an experimental structure, tetrakis(trimethylstannyl)sil-
ane [CSD structure MEZDIE01], which crystallizes in space group 2 at
Wyckoff point i with arbitrarily shaped tetrahedral figures whose
orientation is determined by orientational energy minimization with
the molecular center of mass on an ideal b.c.c. reference lattice.



tries that reduce the number of independent values, even for

asymmetric molecules. In particular �
n�;n�
‘i;‘;‘j

is zero if ‘i þ ‘þ ‘j

is odd and �
n�;n�
‘i;‘;‘j

= ð�1Þ‘iþ‘j�
n�;n�
‘j;‘;‘i

for single-component crys-

tals (van der Avoird et al., 1980).

As discussed previously (Mettes et al., 2004), this pairwise-

additive potential implicitly contains multimolecular many-

body effects in the values of �
n�;n�
‘i;‘;‘j
ðrijÞ as a mean-field contri-

bution. Also, because equation (1) is currently limited to

nearest neighbors, it is most appropriate for ‘van der Waals

molecules’, or molecular crystals held together primarily by

dispersion forces rather than ionic or strongly dipolar mole-

cular crystals which require Ewald sums over distant neigh-

bors. van der Waals molecules seem to be the majority of

molecular crystals found in the CSD, so that this pairwise

additive potential over molecules with an implicit multibody

contribution is a fair parametrization and useful as we seek to

map CSD molecules to a specific number of �
n�;n�
‘i;‘;‘j
ðrijÞ. The full

set of �
n� ;n�
‘i;‘;‘j
ðrijÞ, denoted m, are the axes of GPDs and consti-

tute the search space for constructing molecular crystal GPDs.

2.2. Computational method

Having established translational and rotational components

of the intermolecular potential as the parameter space for

GPDs, we seek to determine potential parameters �
n�;n�
‘i;‘;‘j

sufficient to produce each experimental crystal structure. Our

method has five steps. (i) Define a figure of merit by which to

order the crystal structures. (ii) Ensure the potential, equation

(1), is truncated such that it geometrically is capable of

producing a symmetry change from the assigned reference

lattice to the experimental phase. (iii) Develop a library of

structural types against which the energy of the phase of

interest may be compared. (iv) Determine the energy of an

experimental phase as a function of m. (v) Search potential

parameter space until a m vector is found which makes the

experimental phase energetically minimal relative to the

alternatives in the library.

2.2.1. Figure of merit. In our previous work (Keith et al.,

2004; Mettes et al., 2004) linear response theory was used to

seek phase transitions as a model crystal is cooled from

a disordered plastic crystalline reference state at high

temperature. These transitions are bifurcation points of the

free-energy surface. Following each transition, the phase was

identified by the presence of non-zero thermal averages of

rotator functions U
‘i
m�n� ðxiÞ which serve as order parameters.

This work examines the low-temperature limit of the previous

model where low is relative to the temperature Tpt at which

the molecules undergo the first phase transition from the

reference phase. In this regime the function U
‘i
m�n� itself is

an adequate approximation to the thermal averages of the

rotator functions,

lim
T=Tpt!0

hU‘i
m�n�
i ¼ U‘i

m�n�
ðx0Þ: ð4Þ

Also, the free energy AðTÞ is equal to the potential V in that

limit,

lim
T=Tpt!0

AðTÞ ¼ V: ð5Þ

Equations (4) and (5) are common approximations used in

many crystal-structure-prediction codes (Verwer & Leusen,

1998) and are further justified by the exclusion of disordered

structures (mesophases) in CSDSymmetry from which our

data set is derived.

2.2.2. Potential truncation. The potential in equation (1) is

a doubly infinite sum over manifolds ‘i and ‘j that must be

truncated for practical applications. To determine an adequate

truncation of the potential, we make use of space-group IRs.

Symmetry-breaking mechanisms are classified by space-group

IRs and an order parameter direction such as ða; bÞ (Stokes et

al., 2007). The temperature-dependent values a and b are

given in our model by components of space-group-IR-adapted

basis functions q which are linear combinations of U
‘i
m�n� ðxiÞ

(Mettes et al., 2004). Space-group IR distortions of the crystal

can be decomposed into point-group IR distortions of the

distinguishable molecules in the crystal (Stokes et al., 1991). To

determine which IRs �w of point group w are in a symmetry-

breaking space-group IR �SG, we calculate their subduction

frequencies nSG ,

nSG ¼
1

jwj

X
g2w

��SG ðgÞ���wðgÞ 8 �SG; ð6Þ

where jwj is the number of elements g in w. �ðgÞ�SG and �ðgÞ�w

are the traces of the matrix representation of the space-group

IR and point-group IR, respectively. The calculations are

easily performed using the ISOTROPY software package

(Stokes et al., 2007) using the ‘show frequency’ command.

Space-group IR and point-group IR characters may also be

generated.

Using these point groups one may also calculate the number

of times each point-group IR �w appears for each manifold of

SOð3Þ or ‘i value,

nSOð3Þ ¼
1

jwj

X
g2w

�‘iðgÞ���wðgÞ 8 ‘i; ð7Þ

where �‘i is the trace of the matrix representation of an IR of

SOð3Þ, also called a Wigner rotation matrix. Such subduction

frequencies may be easily calculated but are also tabulated in

standard references (Bradley & Cracknell, 1972) and are

shown for Oh and D3h in Table 1. As there is no molecular unit

IR in the first, second or fifth manifold, there are no Wyckoff

IR rows of U
‘i
m�n� so these manifolds are not shown.

If the potential is truncated before the manifold at which a

Wyckoff IR forming a symmetry-breaking space-group IR is

present [i.e. if nSG = 0 in equation (6)], the desired phase

transition cannot occur with that potential. Therefore we

calculate minimal SOð3Þ manifolds necessary to achieve a

transition from the assigned reference lattice to an experi-

mental structure. This is shown for the f.c.c. reference lattice in

Table 2, where we use the convention of appending the

occupied Wyckoff positions of a crystal structure to its space

group (thus a structure with space group 64 in which molecular

centers of mass occupy Wyckoff points d and f would be
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denoted 64d,f). Point-group IRs subduced

in the space-group IR and the first mani-

fold or ‘i value of SOð3Þ at which a given

Wyckoff IR appears are also shown. The

pathways shown are calculated in

ISOTROPY by finding a group–subgroup

transition from the high-temperature

reference phase, such as f.c.c., to the

observed structure.

For some pathways, such as that of

carbon tetraiodide, 225a! 121a in Table 2,

there is a single space-group IR ��5
subducing a single point-group IR T2u .

Table 1 shows that this point-group IR first

occurs in the third manifold of SOð3Þ when

split by an Oh point group crystal field.

Thus ‘max
i � 3 may give the 121a structure

but ‘max
i < 3 is insufficient. For other path-

ways, such as that of tetrakis(M3-t-butyl-

imido)tetraiodotetraindium, 225a ! 12i,

there is more than one Wyckoff IR

subduced in a space-group IR. Eu , T1u and

T2u can lead to this transition. As two of

them are present at the third manifold

(Table 1), a potential with ‘max
i � 3 may

also produce this transition. For still others,

such as that of adamantane, 225a! 114a,

the pathway is coupled, or composed of the

direct sum of two space-group IRs. Three

different coupled space-group IRs decom-

pose into three different point-group IRs.

One of these pathways uses IRs on the

third manifold of SOð3Þ (‘max
i � 3) while

the other two require fourth manifold basis

functions. A similar analysis for the b.c.c.,

h.c.p. and s.c. reference lattices given

in Appendix A shows that symmetry-

breaking Wyckoff IRs appear by at least

the third or fourth manifold in nearly all

cases.

In real phase transitions, IRs on the

first allowed non-trivial manifold typically

induce symmetry breaking. Second-

manifold-induced symmetry breaking is

uncommon and higher-manifold-induced phase transitions are

not generally observed (Lynden-Bell & Michel, 1994). The

reasons for this are different for small and large molecules. For

small molecules with only a few atoms (i.e. CH4), molecular

orbitals tend to form low-energy slowly varying topologies to

lessen kinetic energy contributions in Schrödinger’s equation.

The result is an IP well represented by smooth slowly varying

basis functions. For large molecules, low-manifold contribu-

tions to the potential are sufficient to locate attractive/repul-

sive regions of the potential and the relative magnitudes of

attractive configurations, even though these basis functions

are not sufficient to represent the fine structure in the

potential due to individual atoms (Hloucha et al., 2001). In
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Table 2
Group-theoretical symmetry-breaking pathways of experimental lattices for the f.c.c. reference
lattice.

Classified by space-group IR and order-parameter direction, each pathway shows the point-group IR
and minimal manifold of SOð3Þ in equation (1) required to achieve it. The order-parameter directions
are given in an abbreviated form in the notation of Stokes & Hatch (2002). The pathways, space-group
IRs, order-parameter directions and point-group IRs were computed using ISOTROPY. However,
transitions belonging to a coupled IR between a high-symmetry point and line are currently not a
feature of ISOTROPY. These entries have been marked with an asterisk.

Pathway Space-group IR

Order-
parameter
direction Point-group IR ‘req0d

225a! 121a ��5 P1 T2u 3
225a! 142a W3 P2 T1g;A2u;Eu 3
225a! 114a X�2 � ��5 P1 � P1 A2u;Eu � T2u 3

Xþ3 � ��5 P1 � P1 T1g � T2u 4
X�2 � Xþ3 P1 � P1 A2u;Eu � T1g 4

225a! 152b �3 (k = 1/3) P1 Eg;T1g;T2g;Eu;T1u;T2u 3
225a! 15e

(REKYUB)
L�3 P7 Eu;T1u;T2u 3

225a! 12i L�3 P2 Eu;T1u;T2u 3
225a! 64d, f �

225a! 14e
(MECKUA)

�þ3 � L�3 P1 � C8 Eg � Eu;T1u;T2u 4

�þ3 � X�5 C1 � S7 Eg � T1u;T2u 4
�þ4 � X�5 P1 � C11 T1g � T1u;T2u 4

P1 � S7
�þ5 � L�3 C2 � C8 T2g � Eu;T1u;T2u 4
�þ5 � X�5 P1 � C11 T2g � T1u;T2u 4

P1 � S7
Lþ2 � L�1 P1 � P1 A2g;T1g � A1u;T2u 4
Lþ2 � L�3 P1 � P7 A2g;T1g � Eu;T1u;T2u 4
Lþ2 � X�2 P1 � P1 A2g;T1g � A2u;Eu 4
Lþ2 � X�3 P1 � P1 A2g;T1g � Eu;T1u 4
Lþ2 � X�5 P1 � P1 A2g;T1g � T1u;T2u 4
Lþ3 � L�1 P7 � P1 Eg;T1g;T2g � A1u;T2u 4
Lþ3 � L�3 P7 � P7 Eg;T1g;T2g � Eu;T1u;T2u 4
Lþ3 � X�2 P7 � P1 Eg;T1g;T2g � A2u;Eu 4
Lþ3 � X�3 P7 � P1 Eg;T1g;T2g � Eu;T1u 4
Lþ3 � X�5 P7 � P1 Eg;T1g;T2g � T1u;T2u 4
L�1 � L�3 P1 � C8 A1u;T2u � Eu;T1u;T2u 4
L�1 � X�2 P1 � P1 A1u;T2u � A2u;Eu 4
L�1 � X�3 P1 � P1 A1u;T2u � Eu;T1u 4
L�1 � X�5 P1 � P1 A1u;T2u � T1u;T2u 4
L�3 � X�2 P7 � P1 Eu;T1u;T2u � A2u;Eu 4
L�3 � X�3 P7 � P1 Eu;T1u;T2u � Eu;T1u 4
L�3 � X�5 P7 � P1 Eu;T1u;T2u � T1u;T2u 4
X�2 � X�5 P1 � C11 A2u;Eu � T1u;T2u 4

P1 � S7
X�3 � X�5 P1 � C11 Eu;T1u � T1u;T2u 4

225a! 14e
(TOHSUE)

�5 (k ¼ 1=4) C7 T1g;T2g;T1u;T2u 3

225a! 15f, f, f, f C2 (k1 ¼ 1=4; k2 ¼ 3=4) C18, C19 A2g;Eg;T1g;T2g; 3
A1u;Eu;T1u;T2u

Table 1
Presence of Oh and D3h point-group IRs for various manifolds of SOð3Þ.

Oh is the Wyckoff point group of the f.c.c., b.c.c. and s.c. reference lattices. D3h

is the Wyckoff point group of the h.c.p. reference lattice. The first occurrence
of a given IR is shown in bold.

‘i Oh IRs D3h IRs

0 A1g A01
3 A2u þ T1u þ T2u A01 þA02 þ E0 þ E00

4 A1g þ Eg þ T1g þ T2g A01 þA001 þA002 þ 2E0 þ E00

6 A1g þA2g þ Eg þ T1g þ 2T2g 2A01 þ A001 þ A02 þ A002 þ 2E0 þ 2E00

7 A2u þ Eu þ 2T1u þ 2T2u A01 þ A001 þ A02 þ 2A002 þ 3E0 þ 2E00

8 A1g þ 2Eg þ 2T1g þ 2T2g

9 A1u þ A2u þ Eu þ 3T1u þ 2T2u



either case, the most important aspects of the IP are given by

slowly varying functions while more rapidly varying functions

produce finer details. Thus as a minimal basis set we truncate

equation (1) at ‘max = 3 or 4.

Truncating at ‘max = 4 leaves 15 coefficients in the potential,

�0;3;3, �0;4;4, �3;0;3, �3;2;3, �3;4;3, �3;6;3, �3;1;4, �3;3;4, �3;5;4, �3;7;4, �4;0;4,

�4;2;4, �4;4;4, �4;6;4 and �4;8;4 . The coefficient �0;0;0 is negligible

since it only affects the trivial basis function U0
0;0 = 1 which is

isotropic and therefore unimportant in rotational ordering. As

the unit IR for Td appears once in the zeroth, third and fourth

manifolds, n� and n� are always 1A1
and have been dropped in

the notation for the coefficients in equation (3). For space

groups whose occupied Wyckoff point group in the reference

lattice has the inversion as one of its symmetry operators, �0;x;x

cancels in the crystal field for odd values of x. This is the case

with the �033 coefficient in the b.c.c., f.c.c. and s.c. reference

lattices with 14 coefficients but not for h.c.p. with 15.

2.2.3. Candidate lattice library. We seek a set of potential

parameters m such that the energy of an observed structure is

lower than other alternatives, whether the alternative struc-

tures are experimentally observed or not. In our previous

work (Mettes et al., 2004), high-symmetry point IR distortions

(Stokes & Hatch, 1988; Stokes et al., 2007) from a reference

lattice led to structures classified using their isotropy

subgroups (ISs). These subgroups represent the most common

types of phase transitions and are minimal in the sense that

only one domain of each structure is tested. This compares

favorably with many crystal-structure-prediction algorithms

which generate thousands of multi-domain duplicate struc-

tures (Gavezzotti, 2007). Therefore they are convenient for

constructing a library of candidate lattices. They are discussed

further in x3. As most molecular crystals have one molecule or

less per asymmetric part of the unit cell (Z 0 	 1), we have

discarded ISs that imply more than one occupied Wyckoff

point (Padmaja et al., 1990). ISs whose primitive unit cell

contains more than eight molecules are also discarded

(Gdanitz, 1997). We note that these constraints are made

based on what is commonly observed in the CSD and can be

incrementally extended in order to achieve a larger candidate

library.

To minimize the energy of these candidate lattices, basis

functions U
‘i
m�n� ðxiÞ are placed at one molecular center of the

molecular positions of the lattice of each IS and space-group

operations of the IS are applied to generate basis functions

U
‘i
m�n� ðxiÞ for all other molecules in the Wyckoff orbit.

Although these candidate lattices are generated from ISs, after

Euler angle minimization they are free to assume whatever

structure the minimization algorithm can find provided the

reference orientations of the basis functions U
‘i
m�n� ðxiÞ are

related by IS space-group operations. Thus a candidate lattice

has fixed (super-) cell parameters and Wyckoff points but

variable Euler angles and space group. This procedure gives a

candidate lattice library that, at a minimum, includes all high-

symmetry k-point isotropy subgroups but which can contain

other lower-symmetry structures as well [owing to additional

symmetry breaking while rotating the basis functions

U
‘i
m�n� ðxiÞ] and provided translational symmetry requirements

are met. As indicated above, this candidate library may be

systematically improved by explicitly including new isotropy

subgroup supercells.

Applying this procedure yielded 75 candidate lattices for

b.c.c., 67 for f.c.c., 19 for h.c.p. and 105 for s.c. Minimizing the

energy of all candidate lattices gives a lowest-energy structure

with which to compare the energy of the experimental struc-

ture while searching parameter space. Although these candi-

date lists are remarkably small compared with the thousands

of structures generated in many crystal-structure-prediction

programs, they are sufficient to place most of the observed

structures as discussed in x3.

2.2.4. Experimental structure energies. With a set of

candidate lattices with which to compare a given observed

structure in m space, we now need to find the energy of each

observed structure, leaving m unspecified. This can be done by

translating the atomic positions of the observed structure into

the needed Euler angles ! and intermolecular angles � of

equation (1). The intermolecular angles � are easy to obtain

because they are determined by the reference lattice, but the

Euler angles are dependent upon the orientation of the

molecules in the reference lattice. This is complicated by the

fact that the experimental atomic positions in each molecule

are slightly distorted from perfect molecular Td point-group

symmetry and are slightly shifted from the ideal Wyckoff

points of their reference lattice. This is due to small strains

resulting from embedding the experimental lattice in the

almost perfect but nonetheless approximate symmetry of its

reference lattice (see McClurg & Keith, 2010). To obviate

these difficulties, the reference-lattice molecular centers of

mass are first slightly shifted to coincide with the centers of

mass of the molecules in their native space group. Then the

Euler angles are calculated by rotating a rigid tetrahedral

molecule to minimize its atomic distances compared with the

coordinates of the experimental molecule. Thus the Euler

angles of a perfect tetrahedron are obtained by a ‘best fit’ to

molecular coordinates of a slightly distorted tetrahedron. We

note the reference orientation of the molecule is with three-

fold axes pointing in the [111], ½�11�111�, ½�111�11� and ½1�11�11� directions.

Next the rotator functions U
‘i
m�n� may be calculated directly

using equation (2). U
‘i
m�n� is fully symmetric with respect to

molecular point-group symmetry and is not influenced by non-

unique Euler angles. Substituting U
‘i
m�n� into equation (1)

yields the interaction potential as a function of the potential

parameters m. This gives the energy E = VðmÞ as a linear

polynomial in m. For instance,

E ¼ 0:2901 �0;4;4 � 0:0028 �3;0;3 þ 0:0036 �3;1;4

� 0:1020 �3;2;3 � 0:0425 �3;3;4 � 0:0127 �3;4;3

þ 0:0053 �3;5;4 � 0:0006 �3;6;3 þ 0:0071 �3;7;4

� 0:0055 �4;6;4 � 0:0183 �4;8;4 þ 1:2640 �4;0;4

þ 0:0109 �4;2;4 þ 0:0316 �4;4;4; ð8Þ

for tetrakis(trimethylstannyl)silane [CSD structure

MEZDIE01], which crystallizes in space group 2.

2.2.5. Minimum energy gap. Now that we have a potential

that is capable of producing all the experimental structures
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from McClurg & Keith (2010) for the {f.c.c., s.c., h.c.p., b.c.c.}

reference lattices, and we have input each structure’s mole-

cular Euler angles to reduce it to a form such as equation (8),

we need to develop an algorithm that will isolate this structure

in m space as the most thermodynamically stable structure. To

this end we propose a general minimum energy difference

algorithm that makes use of the candidate lattice libraries

derived in x2.2.3.

This algorithm proceeds as follows. First, normalize the m
vector by projecting it onto the unit hypersphere, since only

relative m magnitudes affect the phase as T ! 0. Then, taking

the library of structures discussed previously in this section,

minimize the difference of the energy of the target structure

Etarget and the minimal energy structure in the collection

fElibðm;xÞg. Thus a vector �RP is sought that minimizes

�E ¼ EtargetðmÞ �minfElibðm;xÞg: ð9Þ

We note that, for a finite library, this gives the point in m space

of the largest energy gap between Etarget and any other struc-

tures in the library and is representative of the family of

intermolecular potentials consistent with the target structure.

For this reason it is termed the representative potential (RP);

it is characterized by the representative parameter vector mRP.

For an infinite library, �E is bounded below by zero since

fElibðm;xÞg contains the target structure and is minimized with

respect to ! while the target structure is held at fixed mole-

cular orientation.

While Etarget is based on observed Euler angles x and is only

a function of m [i.e. equation (8)], Elib contains a library of

structures whose energies are functions of m and x. Since

minimizing with respect to x is computationally demanding,

we solve equation (9) in an iterative manner. First equation (9)

is minimized for each experimental lattice with fElibg based

only on the energies of the remaining experimental lattices.

For each trial mRP found from this relative minimization, all

additional candidate lattices are minimized with respect to

their Euler angles at fixed m and the lowest-energy solution is

appended to the library. Again equation (9) is minimized for

the energy of each experimental structure with respect to the

augmented set to find a new trial RP in m space and the process

iterates until the RPs converge.

Minimization methods using genetic algorithms (Holland,

1992) (differential evolution) and simulated annealing (Kirk-

patrick et al., 1983) are used on the Euler angle minimization

and energy-difference minimization, respectively. This is

particularly important since the topologies of the energy and

energy difference are both non-linear with many local minima,

the latter also having discontinuous derivatives. We reiterate

that this is a relative energy minimization for �E in parameter

space m and not a simulated annealing with fixed potential and

varying temperature, as is more commonly done.

Since the goal of our work is to determine the minimum

truncation point that provides a sufficiently rich potential

to span the observed crystal structures, we adopt an iterative

procedure that begins with lower-order manifolds and

proceeds to higher orders if necessary. First, the energy

difference is minimized using ‘max = 3 for all experimental

structures. Only if a minimum is not found for a given struc-

ture are fourth manifold basis functions appended to the

parameter space and the process repeated.

3. Discussion and conclusion

3.1. Representative potentials

Calculating potential parameters according to the proce-

dure outlined in x2 gives the results in Table 3 where the

potential coefficients are given for experimental structures in

the four most prevalent reference lattices. Calculations for

other reference lattices such as the distorted diamond cubic

reference lattices identified in part II of this series (McClurg &

Keith, 2010) are not reported here since they represent a

smaller percentage of distinct structures. The difference in

energy between the experimental structure and the next-

lowest-energy structure among the candidate lattices is shown

in the second column.

For eight of the 35 structures, �E< 0. This indicates that

the target structure is not directly in the library but has been

bounded in potential parameter space. Thus �E = 0 on the

borders, but �E< 0 in the interior. mRP gives a set of potential

parameters where the target structure is relatively stable and

is expected to be near the center of the region.

For 18 of the 35 structures, �E = 0. This indicates the target

structure is in the library and xexp ’ xmin. Since �E = 0

throughout the region where the target is stable, mRP is an

arbitrary point in the region and is not necessarily centrally

located.

For six of the 35 structures, 0<�E< 0:01, which is close

enough to zero to conclude that a representative potential for

these structures has been found. This can be asserted because

the potential is composed of products of U
‘i
m�n� ðxiÞ, Clebsch–

Gordan coefficients, spherical harmonics and unit sphere

normalized potential coefficients m that are all unitary. This

makes the energy and therefore energy difference to be Oð1Þ.

An energy difference less than this tolerance likely results

from the method employed to determine orientational Euler

angles for the experimental structures, xexp, and/or incomplete

minimization in the determination of Euler angles at the

global minimum, xmin. Whereas xexp is determined by analysis

of the experimental structures, which is subject to small errors,

the minimizer is free to vary xmin to attain the lowest possible

energy. Thus the small positive energy differences in these

cases are attributed to inaccuracies in the parameters used to

describe the experimental structures and mRP is therefore

likely to be in the correct region of parameter space. A close

approximation to the experimental structure is contained in

the comparison library, and therefore the RP may not be

centrally located in its domain for these cases for the same

reasons as discussed above for the �E = 0 set.

For three of the 35 structures, �E > 0:01. This indicates the

absence of potential parameters consistent with the experi-

mental crystal structure relative to the other structures using

the truncation specified. The mRP listed identifies a point in
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parameter space where the target structure is least metastable

compared with the global minimum in the library. The target

structure is also usually quite similar to the global minimal

structure. This is the case with YEMRIR, for example. It has a

positive �E but is similar to the global minimum structure,

space group 132 with molecules at Wyckoff point a. Both have

two molecules per unit cell and one of the molecules, that at

(0,0,0) in both structures, has the same orientation. The

difference is the second molecule which is rotated 
 90�

between the two structures. Reasons for this difference may be

related to truncation of the potential after the fourth manifold,

lack of molecular displacements and lattice strains in the

model, lack of explicit second-nearest-neighbor interactions,

the low-temperature limit discussed in x2.2.1, or missing

quantum effects. Another reason may be that the reported

experimental phase is in fact metastable in the limit T ! 0.

Ostwald’s step rule supports this possibility. The rule is based

on the observation that during crystal nucleation and growth a

metastable phase frequently crystallizes first which is closest in

structure to the liquid or solution from which it is grown and

which has the lowest free-energy barrier. The crystallite then

undergoes a series of phase changes until it reaches the ther-

modynamically stable structure (Schmalzried, 2003). The

experimentally observed structure may have formed during an

early stage of nucleation as one of these intermediate struc-

tures. No attempts have been made to attribute either of these

two outlying cases to one or more of the above plausible

explanations.

Twenty of the 35 distinct structures can be located in

potential parameter space using only third manifold basis

functions while 15 require fourth manifold functions. This is

contrary to previous suggestions (Briels, 1980) that many

manifolds (i.e. ‘i, ‘j go up to ten or more) are needed to

accurately describe tetrahedral molecules such as methane

and adamantane. It is true that an unwieldly large number of

parameters are needed if the parameters are determined using

the orthogonality of the basis functions to project out each

parameter through integration over its domain. This is the

standard method for evaluating intermolecular potential

parameters from an arbitrary intermolecular potential. The

drawback to this method is that the integrations are domi-

nated by contributions near singularities in the potential.

Therefore the potential parameter values evaluated in this

manner are strongly influenced by high-energy interactions

between molecules that are insignificant in determining the

free energy of the crystal. The low-energy interactions that

dominate the free-energy calculation are insignificant in

evaluating the IP parameters evaluated in this way. The result

is a slowly convergent potential with many additive contri-

butions in the vicinity of singularities and offsetting contri-

butions elsewhere. What is needed for useful GPDs is a

method for evaluating IP parameters from an arbitrary

intermolecular potential that stresses the important low-

energy interactions and results in large, but not necessarily

infinite, energies in the vicinity of singularities (Missaghi et al.,

2010). Current work is a proof by demonstration.
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Table 3
RP components for crystals of tetrahedral molecules in the CSD.

The ‘Identifier’ is a representative structure for a given structural type. The ‘Multiplicity’ is the number of such structures in our data set. The parameters �‘i;‘;‘j
are

indexed according to equation (1) and have been mapped to the unit hypersphere.

Identifier
Multi-
plicity �E �033 �044 �303 �323 �343 �363 �314 �334 �354 �374 �404 �424 �444 �464 �484

b.c.c.
217a HXMTAM07 11 0.000 � 0.000 0.970 0.000 0.230 �0.0790 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
161a TCYMET 1 0.007 � 0.355 0.303 0.380 �0.017 �0.130 �0.213 0.084 0.331 �0.116 0.409 0.496 0.075 �0.138 �0.089
2i MEZDIE01 1 0.001 � �0.142 0.017 �0.215 0.042 0.222 0.221 �0.314 0.483 0.230 �0.287 �0.309 �0.019 �0.158 0.495
60c,d YIMWEW 1 �0.015 � 0.003 0.0 0.0 0.004 0.00 0.998 �0.007 �0.059 �0.008 0.002 0.0 �0.002 �0.010 0.009
2i,i,i OHABEE 1 0.024 � 0.092 �0.003 �0.159 �0.003 0.016 �0.504 0.089 �0.348 0.087 �0.108 �0.102 �0.288 �0.239 0.643

f.c.c.
121a ZZZKDW01 1 0.000 � 0.000 0.23 0.066 0.32 �0.916 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
142a KUJSIR 1 0.000 � 0.000 �1 �0.008 �0.004 �0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
114a ADAMAN08 2 0.002 � 0.000 �0.076 0.258 �0.437 �0.858 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
152b MTRETC10 1 �0.070 � �0.202 0.020 �0.060 0.104 �0.144 �0.858 0.121 0.241 �0.214 �0.002 �0.191 �0.021 �0.171 �0.048
15e REKYUB 1 0.002 � �0.085 0.000 0.095 �0.002 0.001 0.458 �0.226 �0.523 �0.514 �0.191 0.368 0.097 0.034 0.055
12i MECKOU 1 0.000 � �0.19 0.007 �0.634 0.044 �0.106 0.172 0.313 0.082 0.372 �0.439 0.109 0.234 �0.058 �0.118
64d,f METHANEIII 1 �0.239 � 0.087 �0.026 0.014 �0.025 0.016 0.000 �0.024 �0.007 �0.001 0.1 0.067 �0.751 �0.54 �0.346
14e MECKUA 1 0.014 � �0.112 �0.018 0.023 0.038 �0.322 �0.819 0.019 �0.233 0.121 0.022 0.084 �0.306 �0.194 0.06
14e TOHSUE 1 �0.011 � 0.069 �0.005 �0.065 �0.016 �0.163 0.805 0.048 �0.37 0.381 �0.007 �0.1 �0.135 �0.005 0.057
15f, f, f, f CTBROM 2 �0.185 � 0.041 0.025 �0.053 0.025 �0.062 �0.775 0.352 �0.091 0.458 0.013 0.072 0.074 �0.117 0.153

h.c.p.
165d DILWIE01 2 �0.034 �0.839 0.000 0.075 0.302 0.296 �0.334 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
147d ZIZHIZ 1 0.000 �0.793 0.000 �0.040 0.203 0.083 �0.568 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
176h CUCZUV 1 0.009 0.000 0.000 �0.251 �0.965 0.071 �0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

s.c.
215a FOHCUA 3 0.000 � 0.000 0.960 0.000 0.279 �0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120c YEMRIR 1 0.016 � �0.102 �0.111 �0.167 �0.439 0.077 0.403 �0.487 �0.078 0.281 0.169 0.056 �0.071 0.449 �0.167



Truncation of the intermolecular potential after the fourth

manifold leaves up to 15 potential parameters, which is far

fewer than the previous assertions but still too many to easily

visualize. Software such as GGOBI facilitates investigations of

high-dimensional spaces in an interactive way (Lang, 2003).

Any number of axes may be displayed and spatial relation-

ships between the RPs analyzed using the software.

Interpreting the potential coefficients in Table 3 is analo-

gous to describing multipole electrostatic interactions. These

potential coefficients include contributions from all inter-

action modes and are not limited to electrostatic interactions,

however. In the case of tetrahedral molecules the octopole

(‘i = 3) is the first non-zero multipole. Coefficients such as

�0;3;3 and �0;4;4 where ‘i or ‘j is zero represent an octopole or

hexadecapole of one molecule interacting with the zeroth pole

of its neighbors. They are the crystal-field coefficients. As the

basis functions may also be used as quantum basis sets, m may

be calculated ab initio and has been given physical inter-

pretations via symmetry-adapted perturbation theory (van der

Avoird et al., 1994). For instance, although dispersion and

induction forces can be found in all components of m, elec-

trostatic forces contribute only to �
n�;n�
‘i;‘iþ‘j;‘j

(Stone & Tough,

1984) such as �3;6;3, �3;7;4 and �4;8;4.

One drawback of using the algorithm in x2.2 is that, by

finding the maximum energy difference between a phase and

all others, the RPs of neighboring phases tend to be spread

apart. This is because an RP is a vector representing a region

in a space, not a unique set of IP parameters. Homologous

series of molecules (i.e. CF4, CCl4, CBr4, CI4) are expected to

show trends in m space. If members of homologous series have

different crystal structures, then they have different RPs.

However, different RPs are widely spread by our algorithm.

Therefore RPs of homologous series are often widely spaced,

even if the molecules are expected to have similar inter-

molecular potentials. This hides the expected trends among

homologues. Other methods are required to further constrain

the RPs assigned to individual molecules before trends among

homologous series can be investigated using GPDs.

Correlations are evident in reference-lattice assignments.

An example of this is a series of molecules with molecular

formula C16H36X4In4N4 where X is Cl, Br or I. The first two

structures, 14e MECKUA and 12i MECKOU, pack in an f.c.c.

reference lattice while the last, 11e MECKIO, packs in a

tetragonal reference lattice intermediate between f.c.c. and

b.c.c. which is slightly closer to the b.c.c. reference lattice. This

indicates at least the translational part of homologue poten-

tials is similar and that small changes in the atomic constitu-

ency can slightly alter the IP, but significantly alter crystal

structure. This is consistent with experience that similar

molecules often have very different crystal structures despite

similar intermolecular potentials. GPDs acknowledge this by

placing the seemingly disparate structures close to one

another in IP parameter space.

In McClurg & Keith (2010) we noted that structures 195a

and 197a were very similar to higher-symmetry structures

(215a and 217a). If the molecules remained tetrahedral then

the crystal would retain higher symmetry but the reported

atomic coordinates indicate a minor molecular distortion

reducing the space-group symmetry. Assuming that the

reported space group is correct, these structures require a

symmetry-breaking pathway from s.c. and b.c.c. with a minimal

truncation manifold of ‘max
i = 6 or 9 (depending on the

potential-dependent transition pathway taken). In contrast to

these high manifold requirements most pathways require a

third or fourth manifold basis set. In view of the success of

finding RPs using only the two first manifolds (‘max
i = 3 or 4)

for all other molecules in the data set, it seems unlikely that

such a large number of rapidly oscillating basis functions

would be required to properly describe the intermolecular

potential for these structures. It seems more likely that,

barring a Jahn–Teller crystal distortion, the crystal symmetry

may have been underspecified when reported to the CSD as

suggested by McClurg & Keith (2010) on different grounds.

3.2. Extensions and features of the methodology

We now discuss some of the ways to improve the model and

algorithms. An issue affecting the numerical accuracy of the

RP is how large a library of alternate crystal structures is

needed to localize the RP in m space. In our previous work

(Mettes et al., 2004) we considered just the high-symmetry

point isotropy subgroups and in this work have followed suit

since these are the most common (Stokes & Hatch, 1988).

Recall that space-group IRs are indexed by reciprocal-space

vectors (Kovalev et al., 1993; Zak et al., 1969). There are the

same number of k points in reciprocal space as there are unit

cells in the crystal and there is a correspondence between k

points and supercell patterns in the crystal. Experimental

structures are supercells in their reference lattice. As nearly all

experimental structures contain a relatively small number of

clustered parent-lattice unit cells as sublattices, symmetry

breaking occurs at k vectors corresponding to this small

cluster. These are k vectors at high-symmetry points in the

reference-lattice Brillouin zone. If the experimental structure

has a unit cell which is large or flattened/elongated, however, k

vectors corresponding to this larger or longer/flatter group of

parent-lattice unit cells will be on high-symmetry lines and

planes. Symmetry-breaking pathways for experimental lattices

pertaining to b.c.c. and f.c.c. reference lattices in Appendix A

show that some experimental structures contain large [i.e.

CTBROM (More et al., 1977)] or non-clustered parent-lattice

unit cells [i.e. MTRETC10 (Harrison et al., 1972)] and their k

vectors therefore are from high-symmetry plane and line IRs.

Although these cases are less common, such isotropy

subgroups could be included in the candidate lattices in x2.2.3.

Providing such additional structures in the library would place

additional constraints on the RP for the observed structures

and therefore would further localize the RP for each observed

structure at the expense of a much larger library.

In x2.2.3 we chose to consider only isotropy subgroups with

one occupied Wyckoff point. This is a commonly used

simplification (Verwer & Leusen, 1998). We have also

discarded coupled IR isotropy subgroups for the same reason.

Our method could be extended to include library structures
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with multiple Wyckoff points and those from coupled IRs,

although the computational demands are much higher

because of the larger set of candidate lattices and so we do not

pursue it here. The effect would be to further localize the RPs

of each phase, at the expense of a much larger library.

Although tetrahedral molecules are used in the current

example, any molecular point group could be used without a

dramatic increase in the number of potential coefficients m in

the first two non-trivial manifolds. This is because the absence

of IP coefficients in lower manifolds for high-symmetry

molecules is offset by the larger number of parameters in

higher manifolds. Consider the number of basis functions in

the first two non-trivial manifolds of Ih (the icosahedral group)

and C1 (the point group of no special symmetry). These are

the highest and lowest molecular point-group symmetries,

respectively. The first three manifolds of Ih containing a totally

symmetric molecular representation are the zeroth, sixth and

tenth manifolds. The number of potential coefficients is seven

on the sixth manifold, f�1;1
6;0;6, �1;1

6;2;6, . . . , �1;1
6;12;6g, 11 on the tenth

manifold, f�1;1
10;0;10, �1;1

10;2;10, . . . , �1;1
10;20;10g, and seven for the cross

manifolds, f�1;1
6;4;10, �1;1

6;6;10, . . . , �1;1
6;16;10g. There are also two

crystal-field coefficients, f�1;1
0;6;6, �1;1

0;10;10g, giving a total of 27

potential coefficients for Ih . For C1 the first three manifolds

are the zeroth, first and second. The coefficients on the first

manifold are f�
n�;n�
1;0;1 , �

n� ;n�
1;2;1 g. Although there are three copies of

the totally symmetric molecular representation on the first

manifold and therefore the molecular-frame indices � and � in

equation (1) go over f1; 2; 3g, we are free to choose the

standard orientation for the molecule corresponding to Euler

angles f0; 0; 0g. If it is chosen with the IP major axis parallel to

the laboratory z axis then only one of these is non-zero. This

leaves two coefficients, f�1;1
1;0;1, �1;1

1;2;1g. If the molecular minor

axis in the standard orientation is oriented parallel to the

laboratory x axis, only four of the � and � are non-zero in the

second manifold. This leaves 48 coefficients on the second

manifold, f�
n�;n�
2;0;2 , �

n�;n�
2;2;2 , �

n� ;n�
2;4;2 g. With five additional crystal-

field coefficients f�1;1
0;1;1, �

1;n�
0;2;2g and eight cross-manifold coef-

ficients f�
1;n�
1;1;2, �

1;n�
1;3;2g the total number of coefficients on the

first three manifolds of C1 is 60, an increase of roughly twofold

from highly symmetrical Ih . This shows that although this

method has been applied to tetrahedral molecules it is

applicable to other molecular point-group symmetries with

only a modest change in the number of parameters.

Throughout we have implemented a simple direct cut-off

truncation scheme in which a doubly infinite summation is

cut off at a maximum manifold number ‘max
i . An alternative is

the manifold sum cut-off in which we truncate such that

‘i þ ‘j 	 ‘
max. This truncation would include smoother func-

tions before more rapidly oscillating ones, which is consistent

with our expectations of lower-energy electronic contributions

to the potential. Also the number of potential parameters

increases at a slower rate with this truncation. This is shown in

Table 4 for both truncation schemes, where we compare the

cumulative number of parameters for the C1, Td and Ih point

groups at different manifolds. The truncation method used in

this study is a square truncation of the double sum while the

alternative is a triangular truncation. The manifold sum

truncation adds new parameters into the potential more slowly

than single manifold truncation. Therefore, the 15 coefficients

used here are sufficient but may not be necessary. Further

investigation of global phase diagrams with ‘-sum truncation

is needed to test this hypothesis. This is important since lower-

dimensional GPDs would be easier to construct and to use.

From the foregoing discussion we have seen that 15 coef-

ficients are sufficient to locate our data set of experimental

structures in potential parameter space. We have not investi-

gated whether a linear combination would be better. Principal

component analysis could be used to identify linear combi-

nations of basis functions that better fit molecules. It is

possible that fewer than 15 coefficients are necessary.

An analog in the physics community to molecular crystal

GPDs are the various Ising-type GPDs, such as axial next-

nearest-neighbor Ising (ANNNI) GPDs. Despite their simple

potentials, these have been used for decades to explore a rich

variety of commensurate and incommensurate phases

(Gendiar & Nishino, 2005; Kasama et al., 2006; Muraoka et al.,

1999; Sato & Matsubara, 1999; Kim et al., 1995) that can be

applied to realistic materials such as silicon carbide, titanium

aluminium, group-IV element polytypes, and many others

(Wong-Leung et al., 2005; Colinet & Pasturel, 2002; Raffy et al.,

2002). These differ from molecular crystal GPDs in that their

basis functions are binary variables Si 2 f1;�1g coupled by a

constant J, although such couplings typically exist with next-

nearest neighbors or larger. It will be interesting to compare

the results of these simplified models with a full molecular

crystal GPD in our upcoming work (Keith et al., 2010).

A further extension would be to include the intersection of

each solid GPD with a fluid GPD. This would not only allow

crystallographers to identify the first phase to precipitate from

solution, but would also allow inclusion of specific crystal-

lization conditions and kinetic effects. Thus the calculation

of the exact location of the liquid/solid surface could be

performed with as complex or simple a crystal-growth model

as one desires, using not only consideration of surface free

energies, crystal habit and surface defect structure, but also

external conditions such as undercooling, seeding etc. In

theory even kinetic barriers to crystallization could be esti-

mated between solution and GPD candidate phases, thus

suggesting a more realistic progression of polymorph crystal-
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Table 4
Comparison of the cumulative number of parameters in the potential for
a truncation at a given manifold for two truncation strategies and three
molecular point groups.

Direct truncation ‘-sum truncation

‘i C1 Td Ih ‘i þ ‘j C1 Td Ih

0 † † † 0 † † †
1 3 0 0 1 1 0 0
2 60 0 0 2 6 0 0
3 5 0 3 15 1 0
4 10 0 4 1 0
6 8 6 6 1

10 19 10 8

† There is one isotropic basis function for ‘i = ‘j = 0 in each case, but it does not drive
orientational ordering.



lization since GPDs find not only the thermodynamic ground

state but also all metastable states.

3.3. Conclusions

We have shown that a molecular crystal GPD with a small

number of reference lattices derived by McClurg & Keith

(2010) can summarize the experimental data using a modest

number of IP parameters. The data set is diverse enough to

test the GPD’s ability to classify a wide range of space groups

using a common intermolecular potential. Just as the van

Konyenburg GPD classification based on the simple van der

Waals equation of state is nonetheless widely used to classify

the phase behavior of real binary mixtures, molecular crystal

global phase diagrams may be useful in elucidating phase

behavior of a variety of real substances and, in turn,

used to develop novel intermolecular potentials and materials.

Further work to apply these results in constructing

temperature-dependent GPDs is needed and is underway.

APPENDIX A
Detailed derivation of equation (1)

We choose to expand the potential using a complete set of

two-molecule basis functions that span the rotational space

SOð3Þ parameterized by Euler angles x of molecule i; j and

their intervening orientational space S2 parameterized by solid

angle Xij = ð	ij; ’ijÞ. Coupling two SOð3Þ irreducible repre-

sentations (IRs) D
‘i
mini
ðxiÞ and D

‘j
mjnj
ðxjÞ and a spherical

harmonic C‘
mðXijÞ gives

W
ninj

‘i‘‘j
¼
X

mimmj

 
‘i ‘ ‘j

mi m mj

�
D‘i

mini
ðxiÞC

‘
mðXijÞD

‘j
mjnj
ðxjÞ;

ð10Þ

where the explicit functional dependence of C‘
m and D

‘j
mjnj

has

been dropped. This is done in the following manner, where

(Varshalovich et al., 1988)

D‘
mnðxiÞ ¼ expð�im
iÞ d

‘
mnð�iÞ expð�in�iÞ; ð11Þ

d‘mnð�iÞ ¼
Xminð‘þm;‘�nÞ

k¼maxð0;m�nÞ

ð�1Þk

�
½ð‘þmÞ! ð‘�mÞ! ð‘þ nÞ! ð‘� nÞ!�1=2

k! ð‘þm� kÞ! ð‘� n� kÞ! ðn�mþ kÞ!

� cosð�i=2Þ
� �2‘þm�n�2k

sinð�i=2Þ
� �2k�mþn

; ð12Þ

C‘
mðXijÞ ¼

4�

2‘þ 1

� �1=2

Y‘
mðXijÞ; ð13Þ

we first couple angular basis functions of molecules i and j,

A
‘ðijÞ
mðijÞ ¼

P
mimj

C
‘ðijÞmðijÞ
‘imi;‘jmj

D
‘i
mini

D
‘j
mjnj
; ð14Þ

where C
‘ðijÞmðijÞ
‘imi;‘jmj

is a Clebsch–Gordan coefficient (Varshalovich

et al., 1988). Coupling A
‘ðijÞ
mðijÞ to C‘

mðXijÞ and requiring the

overall state to be a scalar W, we obtain

W
ninj

‘i‘‘j
¼
P

mmðijÞ

C00
‘m;‘ðijÞmðijÞ

A
‘ðijÞ
mðijÞC

‘
m: ð15Þ

By definition the Clebsch–Gordan coefficient C‘m
‘1m1;‘2m2

is

zero unless m1 þm2 = m so that m2 = �m1 if m = 0.

It is also zero unless j‘1 � ‘2j 	 ‘ 	 ‘1 þ ‘2, and, since

m1;2 2 f‘1;2 . . .� ‘1;2g, this implies that ‘1 = ‘2. Thus C00
‘m;‘ðijÞmðijÞ

in equation (15) simplifies to C00
‘m;‘ �mm. With the identity

(Varshalovich et al., 1988)

C00
‘m;‘ �mm ¼ ð�1Þ‘þm= 2‘þ 1ð Þ

1=2
ð16Þ

we have

W
ninj

‘i‘‘j
¼
X

mimmj

C‘ �mm
‘imi;‘jmj

ð�1Þ‘þm

2‘þ 1ð Þ
1=2

D‘i
mini

C‘
mD

‘j
mjnj
: ð17Þ

Likewise using the identity (Varshalovich et al., 1988)

C‘ �mm
‘imi;‘jmj

¼ ð�1Þ‘i�‘j�m 2‘þ 1ð Þ
1=2

�
‘i ‘j ‘
mi mj m

�
ð18Þ

gives

W
ninj

‘i‘‘j
¼
X

mimmj

ð�1Þ‘i�‘jþ‘

�
‘i ‘j ‘
mi mj m

�
D‘i

mini
C‘

mD
‘j
mjnj
: ð19Þ

To remove the phase factor one may exploit the mirror

symmetry of the 3jm symbol�
‘i ‘j ‘
mi mj m

�
¼ ð�1Þ‘iþ‘jþ‘

�
‘i ‘ ‘j

mi m mj

�
ð20Þ

leaving

W
ninj

‘i‘‘j
¼
X

mimmj

�
‘i ‘ ‘j

mi m mj

�
D‘i

mini
C‘

mD
‘j
mjnj
: ð21Þ

Equation (21) gives basis functions W from equation (10)

without any symmetry adaptation. The W
ninj

‘i‘‘j
form a complete

set of orthogonal IP basis functions over the eight-dimensional

space SOð3Þ � S2 � SOð3Þ. Similar but slightly different

constructions are given in the literature (van der Avoird et al.,

1980, 1994; Briels, 1980; Stone & Tough, 1984).

While W
ninj

‘i‘‘j
are general, it is computationally advantageous

to project out the point-group symmetry of the molecule and

that of the Wyckoff point. Appendix B reviews our use of

projection operators which amounts to matrix multiplication

by a sparse unitary matrix S
‘i
nin� where � refers to a point-group

IR and n� is a particular component of the IR. For example,

using projection operators for the molecular point group

yields symmetry-adapted matrix elements

T‘i
min�
ðxiÞ ¼

P
ni

D
‘i
mini
ðxiÞS

‘i
nin� ð22Þ

which may be coupled to produce symmetry-adapted basis

functions

F
n�n�
‘i‘‘j
¼
X

mimmj

�
‘i ‘ ‘j

mi m mj

�
T‘i

min�
ðxiÞC

‘
mðXijÞT

‘j
mjn�ðxjÞ: ð23Þ

With these basis functions the potential is
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V ¼
1

2

X
ij

X
‘i‘‘jn�n�

�
n�n�
‘i‘‘j
ðrijÞF

n�n�
‘i‘‘j
ðxi;Xij;xjÞ; ð24Þ

where the one half avoids overcounting, ‘i; ‘j 2 N,

j‘i � ‘jj 	 ‘ 	 ‘i þ ‘j, and �
n�;n�
‘i;‘;‘j
ðrijÞ are coefficients which are

a function of the distance rij between molecular centers. The

full set of these in the potential is termed m. Subscripts �; � are

a compound index referring to multiple copies of the mole-

cular point group unit IR subduced in the ð‘i; ‘jÞth manifold of

SOð3Þ and n�; n� is its dimension, which is always n�; n� = 1.

Point-group IR subduction frequencies in spherical harmonics

are discussed elsewhere (Bradley & Cracknell, 1972). All

other point-group IRs do not have the full molecular

symmetry and so are zero to first order.

Projecting out Wyckoff point symmetry from the functions

T
‘i
min� gives rotator functions

U‘i
m�n�
ðxiÞ ¼

P
mini

S
‘i�
mim�D

‘i
mini
ðxiÞS

‘i
nin� : ð25Þ

Expressing the potential using coupled rotator functions gives

V ¼
1

2

X
ij

X
‘i‘jm�m�n�n�

U‘i
m�n�
ðxiÞ J

‘i‘j
m�n�m�n�ðXijÞU

‘j
m�n�ðxjÞ ð26Þ

where

J
‘i‘j
m�n�m�n�ðXijÞ ¼

X
‘mimmj

�
n�;n�
‘i;‘;‘j
ðrijÞ

�
‘i ‘ ‘j

mi m mj

�

� S ‘i
m�mi

C‘
mS

‘j
m�mj

ð27Þ

is a dimensionless coupling function. Subscripts �; � are a

compound index referring to multiple copies of the Wyckoff

point-group IRs subduced in the ð‘i; ‘jÞth manifold of SOð3Þ

and m�;m� goes over the dimensions of each IR.

APPENDIX B
Projection operators

Symmetries of the molecule and Wyckoff point of the crystal

exist within D
‘i
mi;ni

simultaneously and can be obtained by

applying projection operators (Bradley & Cracknell, 1972)

P�n�n�
¼ d�=jGjð Þ

1=2P
g2G

D��
n�n�
ðgÞ g; ð28Þ

where d� is the dimension of the IR � belonging to the group G

of order jGj, D� is the matrix onto which the IR maps g, and

subsequent orthonormalization is occasionally required. We

have used a slightly different normalization which decreases

the computation in this orthonormalization. Acting upon the

elements D‘
mn gives

P�n�n�
�D‘

mn ¼
P

n

D‘
mnS‘nn�

; ð29Þ

producing a linear combination with the symmetry of �. The

coefficients S‘nn�
form a sparse unitary matrix.
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